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Abstract. We have studied the doped antifemontagnet wings generalized t-J model 
which permits a semi-classid expansion about a mgnetically ordered ground state. 
Of particular interest is the interplay between the spin badrflow associated with 
holes and the coherent spin flow of the ordered magnet. A calculation of the leading- 
order spin-wave spectrum reveals a strong dampis  &ect of the paramagnetic spin 
currents which, for small doping, renonnalizes long-wavelength spin waves and cllwe9 

short-wavelength spin waves to decay into partickhole pair excitations. A correct 
Goldstone mode structure for the spin-wave epntnun is obtained only when the spin 
b d o w  is properly taken into account. 

1. Introduction 

The advent of heavy fermion and perovskite superconductivity has exposed major 
limitations in our understanding of the spin and charge dynamics close to an anti- 
ferromagnetic instability [l]. In more traditional magnetic conductors, magnetism 
appears as a spin polarization phenomenon. The coexistence of local moment be- 
haviour with itineracy in the perovskite and heavy fermion superconductors, raises 
many new questions concerning the interplay between paramagnetic and magnetic 
degrees of freedom. 

One of the more active areas of recent theoretical work concerns the nature of 
the magnetic order close to the metal-insulator transition. Work in this direction has 
been motivated by the perovskite superconductors, notably doped lanthanum cuprate, 
where long-range magnetism is absent, but short-range incommensurate correlation 
has been observed [2,3]. One of the central issues in a discussion of doped antifer- 
romagnets concerns how, if at all, the doping modifies the spin correlations. The 
one-band Hubbard model, and its close cousin, the ‘t-J’ model are widely thought 
to provide an adequate framework for the discussion of the spin and charge dynam- 
ics in these systems. From a BartreeFock treatment of the Hubbard model, it has 
been known that the introduction of charge carriers tends to induce incommensurate 
order [4,5]. In an incommensurate structure, the electrons become mobile, and the 
reduction in their kinetic energy offsets the increase in exchange energy associated 
with the distortion of the magnetic order. Within the Hartree-Fock theory, valid 
for small U, doping induces an incommensurate spin density wave. On the other 
hand, for large U, repulsive interactions between electrons severely suppress moment 
amplitude fluctuations, favoring transverse distortions of the antiferromagnetic order 
upon doping. Schraiman and Siggia [6] have suggested that a more likely result of 
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doping in a strongly interacting Mott insulators is the formation of an incommensu- 
rate helimagnet. The original Schraiman-Siggia approach adopted a long-wavelength, 
semi-classical model for the charge and spin degrees of freedom, and used an essen- 
tially static picture for the ordered state. Several more recent papers have developed 
the mean field picture of Schraiman and Siggia within the 1-J model [7]. 

In this paper, we again return to this issue, using the Schraiman-Siggia hypothesis 
as a starting point to examine the effects of doping on spin dynamics. We are partic- 
ularly interested in damping effects of charge motion on the spin degrees of freedom. 
This is a particularly important issue if we are to take steps towards an understanding 
of experimental neutron scattering results. 

We shall limit our discussion within the confines of the t-J model 

For simplicity, the Heisenberg interaction is restricted to nearest neighbour (NN) sites, 
while the hopping term t i j  = t and l i j  = 1’ for nearest and next nearest neighbour 
sites respectively. These hopping terms in the t-J model generate the motion of holes 
in the magnetic background. As a hole moves, the strong constraint on the occupancy 
implies that the forward motion of charge is associated with a backflow of spin. The 
paramagnetic spin current along a given bond from site I to j can be written 

.7f-j = -iirj q~ (y) vjS +HC (2) 

In the pure spin fluid, spin can also be transported in a coherent fashion via a distortion 
of the magnetic order. The ‘magnetic component’ of the spin current is given by 

3: -1 . = JljSl  x Sj . (3) 

The total spin current is the sum of these two components which determines the 
equation of motion for the spins 

In an ordered spiral magnet, the spin current along specific bonds acquires an 
expectation value due to the twist. Equilibrium occurs when the net uniform current 
vanishes. In a frustrated magnet, this cancellation occun by a balance of the spin 
currents between nearest neighbour bonds, and further neighbour frustrating bonds. 
In a doped 1-J model, the equilibrium of a twisted structure requires a cancellation 
between paramagnetic and ‘magnetic’ components of the current. At  a mean field 
level, doping can be crudely considered as equivalent to static frustration [8], but 
clearly, the nature of this cancellation is quite different in the two cases, and deserves 
mu& closer examination. 

In our analysis, we find that paramagnetic spin currents have a critical effect on 
transverse spin-wave modes. A spin wave can be regarded as a normal mode of spin 
current oscillations. Coupling between paramagnetic and magnetic spin currents in- 
duces damping and it must he included to conserve the total spin. If this damping 
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is ignored, certain transverse Goldstone modes are artificially eliminated. Previous 
mean field treatments [7] resulted in two Goldstone modes at &Q/2 for the spin-wave 
spectrum in a helimagnet with twisting wavevector Q. General symmetry considera- 
tions actually imply that in a helimagnet, which is non-collinear, the correct spin-wave 
spectrum has three transverse Goldstone modes located at 0, &Q [9]. In our results 
we find that the inclusion of the dynamic effects of the damping restores the missing 
modes to the spectrum. In other words, static frustration effects of the holes are not 
sufficient to produce a spin conserving treatment of the doped Mott insulator. 

Unlike its close cousin the Hubbard model, the t-J model suffers from a tendency 
to phase separation [lo]. A t  low doping in this model, there is an effective attraction 
V t z / J  between holes that gives rise to unstable long-wavelength density fluctuation 
modes. From a purist's point of view, this pathology suggests that the t -J  model 
does not provide an entirely faithful representation of the low-energy charge degrees 
of fieedom in a large-U Hubbard model. A pragmatic way to evade this difficulty 
is to note that in practice, Coulomb interactions will always absorb these unstable 
modes into the plasma mode. In an array of conducting planes, each described by 
the t -J  model, separated by a distance I and interacting purely through the Coulomb 
interaction, at low hole densities, the dielectric function has the form 

where x , ( q , w )  is the dynamical charge susceptibility and a is separation of near- 
est neighbours in the plane. In the high-frequency, long-wavelength approximation 
xc - [ q w , ( q ) / e ~ ] ~ / 4 r ,  where w,(q) - 2neZpJii/m* is the (two-dimensional) plasma 
frequency and p is the hole density, so zeros of the dielectric function then occur at 

(7) w2 - a - w , ( q ) [ l -  ( w W / K ) l  (K = 4re2/1) 

indicating that the long-wavelength phase separation instability is absorbed into the 
plasma mode. Provided that t / J  is not too large, the possibility of short-wavelength 
instabilities can also be ignored. 

In the work that follows, we develop a semi-classical treatment of the t-J model in 
the spirit of the large-S approach to quantum antiferromagnetism. A Schwinger boson 
representation is used for the spins, and the constrained electron creation operator is 
written as a product of a spin boson and a hole fermion[7]: Qrn = b z f , ,  where b,, and 
f i  are Bose and Fermi operators respectively 1111. To control the Ructuations associ- 
ated with the hole degrees of freedom, we introduce a fictitious conserved quantum 
number X = 1,. . . , N to the hole operators f i x .  The kinetic term in the Hamiltonian 
is now written 

If = - tij[Qrxo'#jAe + HC] 
(i,i),oA 

where 
= b L f i A  ( A =  l , , . . , N ) .  

The constraint associated with the more general model is then 

(9) 
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To develop a consistent IargeS limit, we permit both N and S to grow, preserving the 
ratio 7 = N/2S. In this way, both the kinetic and spin t e rm in the Hamiltonian scale 
extensively, as O(7S2) and O(Sz) respectively and the fluctuations in the spin and 
bilinear fermion operators are simultaneously quenched as S + CO. Our strategy is to 
evaluate the properties of the model in a I/S expansion about this limit, ultimately 
returning to the t-J model by setting 7 = 1 and S = 1/2. 

Figure 1. Spin-vaw self-energy of O(S) from particlchok pair renomalization 

Perhaps the most surprising feature to emerge from this approach is the appearance 
of strong spin-charge coupling in the leading-order fluctuations. The effect of spin 
backflow on the spin-wave modes must be included on general symmetry grounds. 
Indeed, the spin-flip scattering of holes appears in the leading-order spin fluctuations 
(figure 1). We find that this induces strong spin-wave damping in the large-S limit 
which can cause destruction of long-range order for spin S = 1/2. 

The organization of the paper is following. In the second section we present general 
symmetry considerations concerning the qualitative shape of spin excitation spectrum, 
as in the case of frustrated Heisenberg model. In the third section, we carry out semi- 
classical analysis to leading order consistently. We compute the spin wave spectrum 
and demonstrate explicitly the presence of three Goldstone modes at 0,  rtQ. Finally, 
we discuss the properties of holes in this background, and the effect of higher-order 
t e r m  in our expansion. 

2. General symmetry considerations 

In the S - CO limit that we shall develop, the behaviour of our generalized t-J model 
(1) is determined by a saddle point, where, as we shall see, the spins develop long- 
range helimagnetic order with incommensurate magnetic wavevector Q = (Q=, 9,). 
In such a state, the local magnetization takes the form 

where .ti and v^ are orthogonal unit vectors. Quite generally, symmetry considerations 
determine the form of the low energy transverse spin-wave spectrum in such ordered 
antiferromagnetic structure. In any approximate treatment of the spin spectrum, con- 
sistency with these general considerations provides a check of whether the approach 
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is spin conserving. In the case of helimagnetic structure with Heisenberg symmetry, 
invariance of the Hamiltonian with respect to uniform spin rotations leads to Gold- 
stone modes at 0 and kQ, corresponding to rotations about axes lying normal, and 
parallel to the spin plane. Rastelli [12] has applied these arguments to the frustrated 
Heisenberg model. The extension to the t -J  model is strightforward, as we now show, 
following the formalism of Forster and Wagner[l3,14]. 

Let us examine the spin fluctuations normal to the plane of the precessing mag- 
netization. Let 6 = li and r̂  = v^ define the co-ordinate axes in spin plane, then the 
spectral function for spin fluctuations normal to the spin plane is 

x"(w,q) = /'-dl -m ([q(t), S!,(0)])eiwi . (10) 

The corresponding static susceptibility x(q) and the density of states p(q ,w) ,  with 
energy w > 0 and momentum q, that are excited by SEq are then 

where P denotes the principle part. From (11) and (12), the second moment of the 
spectral density for the operator SE, is 

For small q, spinconservation implies that the numerator in this expression is propor- 
tional to q2 ,  so w: + 0, as q + 0, since the static suscepbibility x(q )  is finite in this 
limit. To see this, we write 

Spin conservation forces the cominutator to vanish at 4 = 0, and inversion symmetry 
implies that the whole expression must vanish at least as fast as q2 .  

For q -.+ &Q, the numerator of (13) tends to a constant, while the slow transverse 
fluctuations in the magnetization induce a divergence of the staggered transverse sus- 
ceptibility x(q), which in turn leads to vanishing as (q iQ)2 .  On general hydrody- 
namic grounds, the long-wavelength static fluctuations of the spins behave classically, 
and the long-wavelength fluctuations are given by the inverse of the classical action. 
The fluctuations in the vicinity of q - &Q are 

where 'Rs is the spin-wave stiffness tensor. One can place an upper bound on the 
spin-wave stiffnesses by using Bogoliubov inequality (xa. A XB. I IXA. SI') 
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The commutator in the numerator is 

([p&Q, E,]) = (17) 

and for the spiral order assumed above l(Sg,)l = S, which is just the spiral mag- 
netization, 80 the denominator provides an upper hound on the eigenvalues of the 
spinwave stilfness tensor. The action of the spin operators within the commutator in 
the denominator is to 'twist' the Hamiltonian. Evaluating this commutator for the 
t-J model we find 

where N is the number of lattice sites and 

(19) 

with qy = 4. - R,. Expanding about q = 0 we obtain an upper hound on the 
stiffness given by 

(20) 

In practice, spin current fluctuations will always reduce the stiffness below this upper 
bound 191. 

Note finally, that we can combine the results of this section into a compact upper 
bound for the entire transverse spin-wave spectrum 

-* U9 <~<S~*[E'(Q)-E=(O)][E~(~~Q)-~(O)] - 9 -  (21) 

Ee(q) =N-'(H"(q)) .  (22) 

where 

This upper bound can be used as a single mode approximation to the transverse 
spin-wave spectrum. 

3. Renormalized spin wave 

In this section, we shall use 1/S as the small parameter to do a combined large-S 
and large-N expansion with ratio N/2S fixed. To leading order, the fermion spec- 
trum is not modified. However, tbe spin wave spectrum is strongly renormalized by 
particlehole excitations. We shall calculate the renormalised spin-wave spectrum and 
show explicitly how the correct Goldstone mode structure ie restored by particle-hole 
renormalization in our systematic expansion. Near Goldstone modes, the spin-wave 
spectrum is linear. We shall calculate the renormalized spin-wave velocity in the small 
doping limit which becomes, in this case, anisotropic due to coupling with particle- 
hole excitations. In the next section, we shall discuss what is probable modification of 
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the leading-order picture, when we take into consideration higher-order contributions, 
which will give us insights for the spin S = 1/2 problem. 

We first rotate independently the spin basis at each site such that the new reference 
frame is locally ferromagnetic[9]. The Hamiltonian in the new reference frame is 

H = - Etij j i A j & b t  exp($iOij njj . a ) b j  + HC + J z s i n e i j  nij .(Si x S j )  
( i f )  NN 

where bt = ( b t ,  b t ) ,  the unit vector mi, is the axis required to rotate coordinate 
system at site j into coordinate system i ,  and Oij is the angle of rotations between 
two local reference frames. 

In the S -+ a, case, the ground state reduces to the classical configuration. We 
look for a simple twist solution: nij =constant, Bij Q .  q.i with twisting wavevector 
Q = (Q,,Q,). 

E, = 2 y C t 6 g ,  cos Qs + - 1 - P Y  J ~ ~ o ~ Q ~  
6 4 6  

where 6 summation runs over nearest and next nearest neighbour vectors and Qs = 
Q. 6. We set the lattice constant equal to one for convenience. Js # 0 only for nearest 
neighbour vectors 6. We use g6 to denote the averaged hopping amplitude 

9s = (fifjA) 6 = Ri - Rj (26) 

where we do not sum over A. The four neighbouring hopping amplitudes will be 
explicitly denoted as gz,  gy, g+, g- for 6 = z, 9, z + y, z - y, respectively. The 
other parameters are y = N/2S and the doping p = (f,?Jil), i.e. fermion density per 
flavour. The twisting wavevector is obtained by minimizing equation (25): aoE0 = 0. 
For small t', the vector Q is diagonal Qz = Q, = Q, g, = g, = g. Then, we obtain 
explicitly 

Fluctuations about the classical configuration are spin waves. To explore the 
spin-wave properties, we use the usual Holstein-Primakoff expansion. We choose the 
twisting axis to be the I axis: nij = z. Then 
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Here, bi and b t  are Holstein-Primakoff Bose operators. After expanding Hamilto- 
nian (23) in the large S limit and keeping the relevant terms for our purpose, we 
find 

where we have introduced the following short-hand notation: 

~ ( k ,  q) = [ -2t6 sin (2) cos ( y ) sin k6 + 2t6 sin (+) sin ( y ) cos k6 
6 

- - 1 J6 sin Qs sin qs - =t6g6 Y sin (9) sin q6] 2 

Here = S(l - w) is the reduced spin magnitude. In the Fermionic spectrum, p is 
the chemical potential which is determined by doping. 

The resulting Hamiltonian (29) describes a system of spin fluctuations coupled 
to fermions. The coupling arises from the association of the spin backflow with for- 
ward charge current. We note that the interacting vertex coupling constant u(k, q) is 
O ( f i ) .  Since both the bare fermionic and bomnic propagators are of order 1 / S ,  a 
perturbative treatment in 1/S is suitable in the large-S limit. To leading order, we see 
that spin fluctuations have no effect on fermion dynamics. The fermiooic propagator 
is simply the free one 

k iw, 
It = GAA,(k, iw") = G(k, iWn)6A~t = . 

1W" - & ( I C )  

But the spin-wave spectrum is renormalized by the interactions due to the presence 
of N flavours of fermions. We can define the spin-wave propagator matrix as 
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The relevant contributions to the self-energy of the spin-wave propagator are three 
diagrams shown in figure 1. They can be compactly written a8 

The full leading-order spin-wave propagator is 

The explicit expression for the spin-wave self-energy is 

In the last expression, we denote the fermionic polarization bubble in figure 1 by 

where f ( ~ ~ )  is the Fermi-Dirac distribution function. Straightforward algebraic cal- 
culations lead to following implicit equation which determines the spin-wave spectrum 
w = w(q): 

w-A(w,q)= \ l jh ,+S(w,q) l2- [Aq+C+-(~ ,q) lz  (37) 
where 

(38) 
S(W,P) = i [ C + + ( w , q )  +x,t(-w>--Q)l  

A(w,q)  = $P,,Cw, d - Ct+(-W, 4 1  ' 

If we do not include particlehole contributions, that is, if we neglect the Bmon self- 
energy Zao(iun, q) ,  then it is easy to see that the spin-wave spectrum has Goldstone 
modes at 0,  but not a t  AQ, which violates the symmetry requirement. Including 
fermionic renormalization, which is consistent in the 1/S expansion, will restore the 
correct symmetry as discussed in the previous sections. Now, we can explicitly verify 
that 0,  *Q are Goldstone modes. For instance, we can put w(Q)  = 0 into equation (37) 
toverifyA(O,Q)=Oand hQ+AQ+S(O,Q)+Ct-(O,Q)=O. Toshowthis, wenote 
that U(+ -q) = -u(k, q)  and l I - h ,  -q,iv,) = II(k, q, bn), so we can rewrite 

We can also rewrite 
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So a t  q =  Q , w  = 0 

This exactly cancels hq + Aq from (30). We note that, in contrast to the Heisenberg 
model, .t(Q,,Q,) are not zero modes, breaking the crystal point group symmetry 
in the large-S limit. This is because even in the large-S limit, surrounding spin 
condensate, there are a lwap spin fluctuations coupled with charge fluctuations. These 
fluctuations violate the crystal point group symmetry[9]. It is interesting to note that 
the asymmetric part of the self-energy A(w, q)  does not vanish in this case, in contrast 
to the Bosonic exchange contributions resulting from three magnon interacting vertex 
in the pure frustrated Heisenberg model 1121. The difference comes from the fact that 
in pure Bose system the Bosons can only propagate forward, whereas in this case 
magnons are coupled with the Fermionic system in which there are both quasiparticle 
forward propagation and quasihole backward propagation. 

The implicit spectrum equation (37) in the general case is difficult to solve. For 
1’ Q 1,  the twisting wavevector is diagonal, Q = (Q,Q). We shall limit the following 
discussion to this case. In the particular case of 1-J model, i .e .  1’ = 0, the spin 
excitations are highly degenerate along the line 9, = 9, = 9 in the Brillouin zone in 
the large-S limit. This degeneracy is removed by the presence of the next nearest 
neighbour hopping t’. However, we think this degeneracy is unphysical when t’ = 0. 
Once one continues to the small S, we do expect that this degeneracy is lifted by high 
order terms (see the discussion by Shraiman Siggia [6 ] ) .  

For the long-wavelength spin waves near the Goldstone mode 0 ,  we write q = 
( l , q )q ,  q - 0, with the parameter q determining the direction of approaching the 
long-wavelength limit. We then carry out small 9 expansion 

h, + Aq N 43J( 1 - cos Q) (39) 
h, - A, N ZSC qa 

with 

So, we obtain the equation which determines the renormalized spin-wave velocity 
c = w/(9-), 

where 

S(w,‘I)-Et-(w,q) -Y&?. 

Since the spectrum equation (37) is symmetric under inversion q -+ -q, we limit our 
consideration for 9 > 0 only. The spin-wave velocity depends on q, so it is anisotropic. 
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For small doping and small t', specifically, assuming p - t ' /J < 1, and t 2 p y / J  > 
t', we can expand the spin-wave velocity in powers of doping p up to O(p*), 

c = CO + C , P  + c2p2. (43) 

After purely algebraic calculation, we obtain 

co = 2 d S J  (44) 

(45) 

where c, is just the AF spin-wave velocity. We have also obtained c2, but i t  is too 
lengthy to write it explicitly. The spin-wave velocity is suppressed by doping and it is 
most suppressed along the direction of pitch. Taking 7 = 1, the semi-classical result 
(43) suggests the instability of long-range order for t2p - J 2 .  

0.4- 
0.69 0 .71  0.73 0 . 7 5  

qa 
Figure 2. (a )  Spin-wave Spectra wq against q, for t / J  = 3, t ' /J = 0.16 and doping 
p = 0.02, dong two directions in the Brilloh zone. The square lattice eonstant is 
denoted by a. The wavevector is expressed 114 q = (1, ~ ) q .  The dotted -ye is along 
the z axis, v = 0; the full CUM is along the disgcnal, v = 1. The full curye is broken 
in the middle ahere the spin wave is overhped and the spin-wavc spectral density 
no longer has a sharp peak. ( b )  The mpin-wave Bpectrd weight 2, for the diagonal 
WEWeVeCtor q. = 1. 

For arbitrary doping, the spectrum equation (37) has been solved numerically. 
The spectra for a particular set of parameter values are plotted in figure 2(a). Despite 
coupling with pair excitations, spin waves along the I direction and long-wavelength 
spin waves along the diagonal direction remain well defined to leading order. The re+ 
son is that decay of these spin waves into a single particlehole pair is not possible in 
this case because the spin-wave velocity is larger than the Fermi velocity. We observe 
that along the diagonal direction of the Brillouin zone, some of the short-wavelength 
spin waves are overdamped due to decay into single partide-hole pair. This can be 
seen from figure 3, in which we plot the single particle-hole pair excitation contin- 
uum together with the spin-wave spectrum for the same parameter values of figure 2. 
Damping occurs in  the region where spin-wave spectrum crosses the pair excitation 
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qa 

Figure 3. Spin-wave spectrum together with the continuum of partide-hde pair 
exdtations(shadedarea)for thesamcpsrsmetsvduepasinfi-2. The wavw&tor 
ie dong the diagod direction, r) = 1. The dotted curve in the damped spin-wave 
region is just a guide to the eye. 

continuum. Damping is also manifested by the fact that the spin-wave spectral weight 
is increasingly transferred to particle-hole excitations as the wavelength decreases, 
before the real decay occurs. If we conveniently denote the spectrum equation (37) as 
w - +(w,q) = 0, then the spectral weight is defined as Zq = [I - B,cP(w, q)],,(q). 
The spectral weight for p along the diagonal direction (q  = 1) is plotted in figure 2 ( b ) .  
The spectral weight drops sharply to zero as the spectrum passes into pair excitation 
continuum and becomes overdamped. 

As the doping increases above a certain threshold, p > pc, the spin-wave spec- 
trum is almost entirely dissolved in the pair excitations. In this case, even at long 
wavelengths, there are no sharp spin-wave excitations. Once p > pc, the poles of the 
Green function given by (34) move off the real axis, acquiring a finite imaginary part: 
uq - i rq .  At long wavelength, rq is linear in q. We plot the spectrum for the wavevec- 
tor q along the diagonal direction ( q  = 1) in figure 4, for a set of particular values of 
physical parameters. In this case, even long-wavelength spin waves are overdamped. 

The spin-wave damping is reminiscent of the Landau damping of coherent sound 
modes in the Fermi liquid (zero sound) [15]. When the sound velocity is larger than 
the Fermi velocity, the density modes can only decay into multiple particle-hole pairs; 
the resulting lifetime is long due to a small decay amplitude and little available phase 
space. Overdamping occurs when the density mode dissolves into pair excitation 
continuum, that is when the sound velocity is smaller than the Fermi velocity, 50 

that it can decay into single particle-hole pair. The coherent density modes lose their 
identity. The origin of Landau damping is quasiparticle interaction; the spin-wave 
damping in our case is produced by the coupling of backflow spin currents to charge 
currents. 

1 

4. Discussion 

We have shown in general the existence of three Goldstone modes in the spin-wave 
spectrum following the long-range spiral order hypothesis. The spectrum obtained in 
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12, 1 

Figure 4. Damping of the long-wavelength spin waves for 5.2% doping. The param- 
eter Val“- M t / J  = 3, t’/J = 0.15. The complex f w e n c y  wp - irq is cdcukted 
for wave-tor p along the diagmal directioa (7 = 1). The full CUM ia the real part 
of the frequenoy wq; the dotted one is damping coeRicient rq. 

our large-S expansion displays the correct Goldstone mode structure which can only 
be obtained in a spin-conserving treatment. This requires that one goes beyond the 
static frustration approximation and considers the coupling between spin and charge 
currents, underlying the strong correlation between hole motion and spin background. 
How does the leading-order picture, namely the conducting helimagnet, evolve when 
we continue to small spin S? To answer this question, we need to consider high order 
terms in the 1/S expansion. 

To leading order spin waves are overdamped when they dissolve into pair excitation 
continuum. To second order, the holes can be scattered OK spin fluctuations. Scatter- 
ing by damped spin waves broadens the fermion quasiparticle excitations. Thus, we 
lose the well defined Fermi liquid limit even at T = 0. Long-wavelength spin waves 
can in turn be broadened by damped quasiparticlequasihole pair excitations. How- 
ever, for small doping p < pc,,only a small fraction of spin waves is damped and these 
damped spin waves have a quite high excitation energy; the resulting scattering ampli- 
tude is small. The corresponding lifetime for quasiparticles must, therefore, be quite 
long. We can view the system as being composed of long-wavelength spin excitations 
together with quasiparticles that weakly scatter each other. In this sense, we expect 
that the conducting helimagnet picture offered by the leading-order calculations is 
a good approximation, being essentially valid for the range of small frequencies but 
larger than the inverse of the lifetime. 

When doping exceeds a certain threshold, the spin-wave spectrum is almost com- 
pletely dissolved into the particlehole pair excitation continuum. Even long wave- 
length spin waves can decay into particle-hole pairs. This means that most spin 
fluctuations are incoherent. Scattering of holes by these incoherent spin fluctuations 
significantly broadens the quasiparticle excitations. The presence of quite a large 
fraction of quantum spin fluctuations for the small-spin case, especially for S = 1/2, 
indicates that quasiparticles are damped rather rapidly. This means that the correla- 
tion between charge and spin excitations is so strong that it is improper to consider 
each of them separately. The nature of this state is unknown. Ramakrishnan [16] 
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speculated that the long-range order cannot survive the strong decay of spin waves 
into particlehole pair excitations, and the scattering of quasiparticles by spin excitb 
tions can lead to a linear frequency dependence for the imaginary part of quasiparticle 
self-energy. It is interesting to recall that the pair renormalisation also leads to a 
finite lifetime for phonons in metals. Phonon spectrum certainly dissolves into the 
pair excitation continuum due to high electron density. But the imaginary part of the 
phonon self-energy is smaller than the real part of phonon frequency by a factor of 
(electron masslion mass). 

There is some inconclusive evidence from neutron scattering experiments [2,3], 
which points to the existence of an incommensurate spin correlation in doped 
La&uO,. But, the correlation is only of short range and the correlation length is 
essentially temperature independent. According to our large-S calculation, spin waves 
are overdamped for just 5% doping for t / J  = 3 figure 4. This can he regarded as the 
precursor of depleting long-range order for spin S = 112. Clearly, the actual spin 
dynamics is much more complicated than what the simple semi-classical picture can 
offer. It is not clear as to whether the topological effects play a significant role. 
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